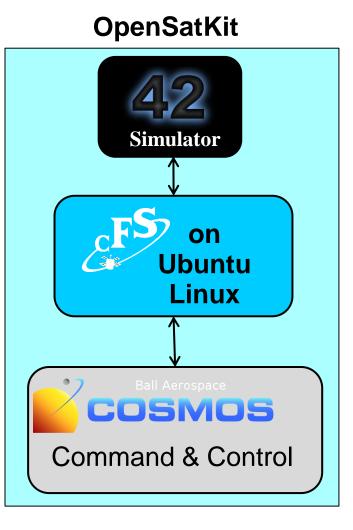


OpenSatKit A Tool Suite for Working with NASA's Core Flight System

Workshop on Open-Source Space Missions Design Tools

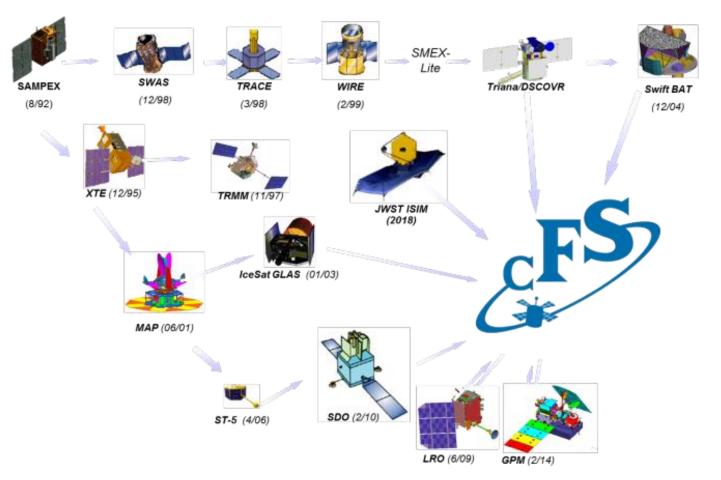
> David McComas <u>dmccomas63@gmail.com</u> 3/1/22

Open STEMware Foundation


Open

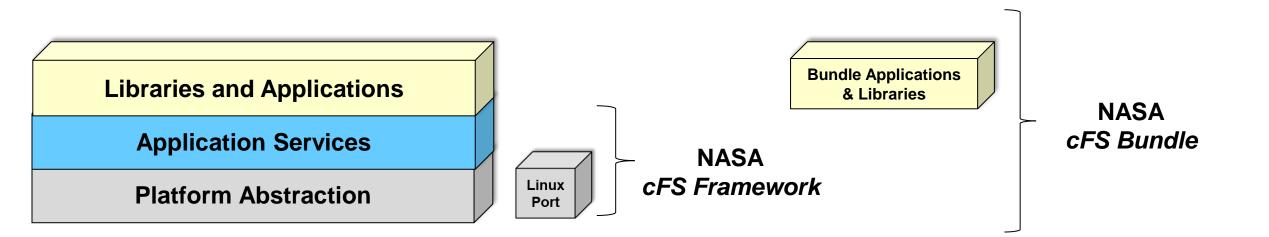
Sat Kit

Introduction

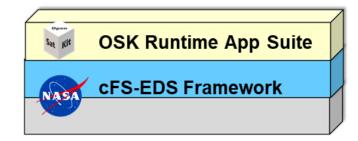


- OpenSatKit was originally created to help flight software developers adopt and work with NASA's core Flight System (cFS)
- OpenSatKit combines COSMOS, cFS, and 42 into a single platform
 - All users must install the complete system regardless of their goals
- OpenSatKit is currently being decomposed into multiple components that can be combined to better serve user needs
- Agenda
 - 1. Describe the new tool suite
 - 2. Demonstrate end-to-end simulation using the <u>current OpenSatKit</u>
 - 3. Demonstrate cFS app development using <u>cFS Application Toolkit (cFSAT)</u>
- This slide deck contains many details that will not be presented, but will be valuable as a future reference

NASA's core Flight System


NASA's core Flight System (cFS) is an open-source flight software (FSW) framework providing an application runtime environment that is portable across different hardware/operating system platforms.

The cFS provides a high quality FSW with decades of flight heritage.


Platform Abstraction: Provides portability across different operating systems including Linux, FreeRTOS, and RTEMS
 Application Services: Creates an application runtime environment that allows apps to be reused across projects
 Libraries and Apps: Provide project functionality

OpenSatKit Overview

- OpenSatKit (OSK) is suite of open-source products built upon NASA's core Flight System (cFS)
- It provides:
 - 1. A cFS educational platform
 - 2. A design & development environment for mission flight software applications
 - 3. Platforms for STEM** education and hobbyists
 - 4. Platforms for technology development

OSK Runtime Bundle

- Built on NASA's cFS Electronic Data Sheet (EDS) Framework
 - EDS supports standards-based interface specifications
- The app suite provides essential flight software functionality
 - Command & Telemetry ground interfaces
 - Onboard file management and ground-flight file transfers
- Assured framework-app compatibility
 - **Science Technology Engineering and Mathematics

OpenSatKit Product Suite

cFSAT Bundle Adds:

& Control

-

Educational Apps

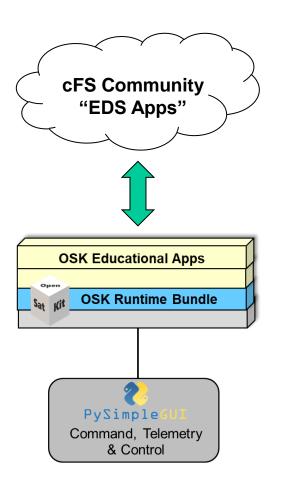
Command, Telemetry,

PySimpleGUI for

Simulation Bundle Adds:

- Mission Apps
- 42 Simulator
- COSMOS for Command, Telemetry, & Control

Pi-SAT Bundle Adds:


- Raspberry Pi Apps
- PySimpleGUI for Command, Telemetry, & Control

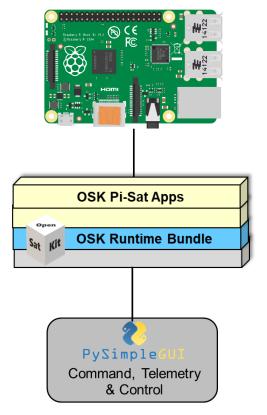
OpenSatKit Bundle

- Runtime App Suite
- cFS-EDS Framework

• Lightweight platform that serves as a cFS

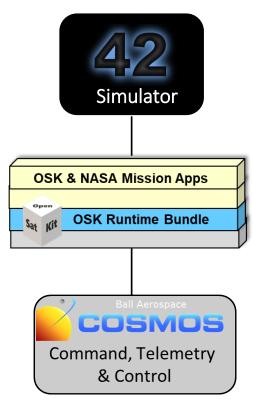
- Educational platform
- Application development environment

• Suitable for software STEM educational projects including


- FSW application development and test
- Ground software data processing

Uses the <u>cFS with Electronic Data Sheets (EDS) Framework</u>

- Includes an EDS toolchain that creates ground and flight software artifacts from cFS apps packaged with an EDS interface specification
- Uses latest cFS v7 Caelum release
- Educational apps for training and self-guided tutorials
- Minimalistic Command, Telemetry and Control ground system
 - Written in a lightweight portable python GUI framework called <u>PySimpleGUI</u>
- **OpenSatKit-Apps** is a github repository of cFS Apps with EDS specifications


Pi-SAT

- Adds Raspberry Pi libraries and apps
 - Use low-cost Raspberry Pi boards to learn and use the cFS Framework
- Low-cost hardware platform ideal for learning how to write cFS "interface apps"
 - Provides command and telemetry interface to a hardware device
 - Use Python to talk with your system
- Base platform can be customized for STEM educational projects

Complete ground, flight, and dynamic simulation system including

- Ball Aerospace's COSMOS command and control platform for embedded systems
- NASA Goddard's 42 dynamic simulator

Suitable for

•

- Flight software application development and test
- End-to-end software simulation
- Ground software data processing

2022 OSK Product Roadmap

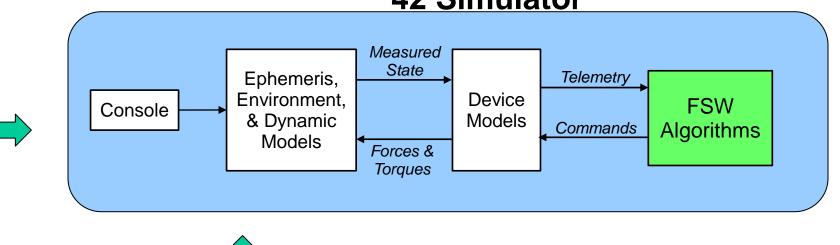
Current OpenSatKit https://github.com/OpenSatKit/OpenSatKit/wiki **cFSIM** Simulator Simulator **OpenSatKit** COSMOS Command, Telemetry "EDS Apps" & Control Refactor SimSat** on & Distribute **Ubuntu Linux Beta Release** NASA https://github.com/OpenSatKit/cfsat **OpenSatKit Runtime Bundle cFSAT** Command, Telemetry & Control PySimple Command, Telemetry & Control

****SimSat =** Reference mission flight software app suite

OpenSatKit End-to-End Simulation

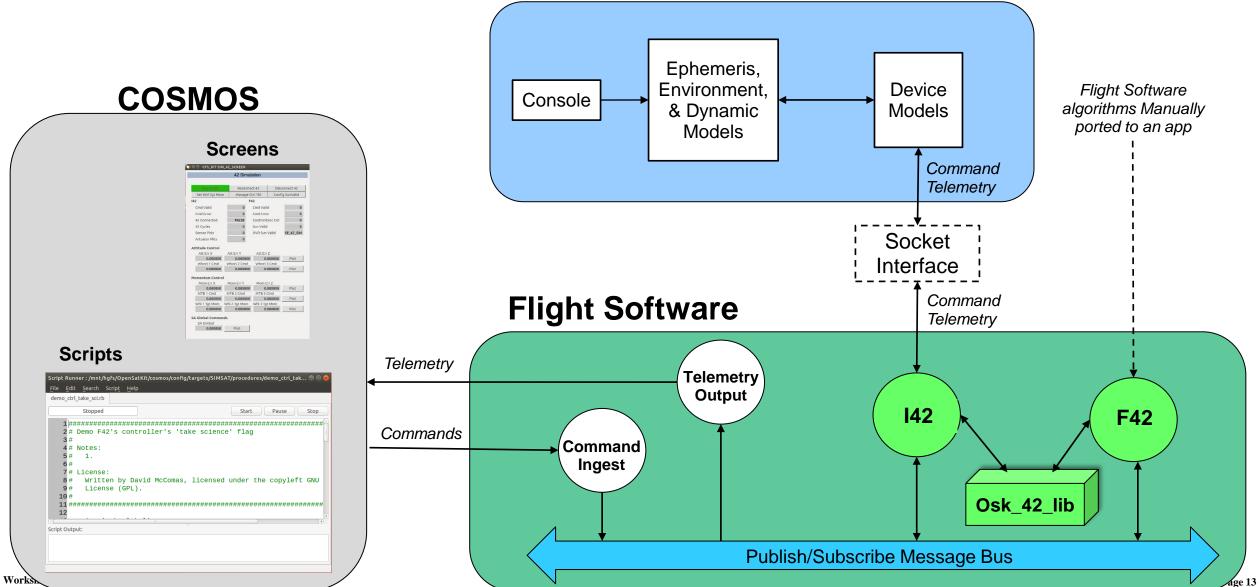
Open


S_{at} Kit



42 Standalone

42 Simulator


User interact with the simulation via the console and graphics

OpenSatKit 42 Simulation

42 Simulator

42 Flight Software App Telemetry

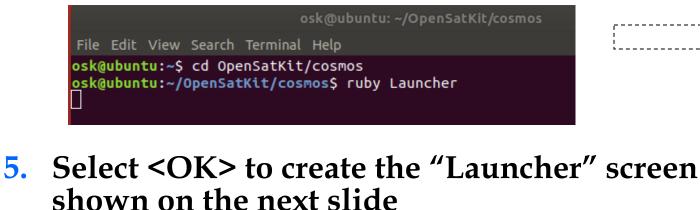
	SIMSAT	SIM_4	2_SCREEN		000		
42 Simulation							
Start 42 Sim	op 42 Sim	Re	connect 42	Se	et 42 Exec Rate		
Run Ops Demo Sel	Ctrl Mode	Set C	ontoller Gains	Cor	nfigure SunValid		
142 - 42 Interface Ap	P	F4	2 - 42 Standalo	ne C	Controller App		
Cmd Valid		1	Cmd Valid		0		
Cmd Error		0	Cmd Error		0		
42 Connected	TRU	E	Control Exec C	nt	9482		
42 Cycles	948	2	Sun Valid		TRUE		
Sensor Pkts	948	2	OVR Sun Valid		USE_42_SIM		
Actuator Pkts	948	2	Take Science		TRUE		
Attitude Control Att Err X	Att Err Y						
0.000016	0.000	0047	Att Err Z -0.00001	2	Plot		
Rate Err X	Rate Err Y		Rate Err Z		i toc		
-0.000001	0.000	0005	0.00000	0	Plot		
Torq Cmd X	Torq Cmd Y	(Torq Cmd Z				
-0.000066	-0.002	2566	0.00046	52	Plot		
Momentum Control							
HVB X HVB Y			HvB Z				
0.237216	-0.454	1528	0.938621		Plot		
Mom Cmd X	Mom Cmd	Y	Mom Cmd Z				
18.922585	12.233530		1.141822		Plot		
SA Gimbal Command	ls						
SA Gimbal							
2.084035	Plot						
light Event Messages							
Closed science file /cf/	simsat/rec/is	im_03	0.txt				

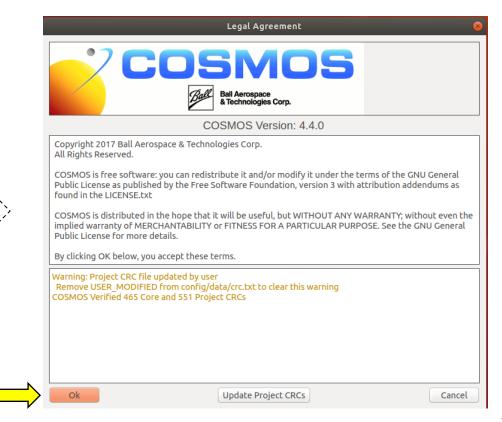
Flight software attitude control app defines a "Take Science" flag

- Used by "operations" to determine when to enable science data collection
- Set to TRUE when attitude errors on all three axes are below a threshold
- Default threshold is .0005 radians

Demo Introduction

- Demo 1
 - Use OpenSatKit screens to run and interact with a simulation
 - Observe the behavior of the "take science" flag
- Demo 2
 - Run a script that manages an ops scenario
 - Waits for the "Take Science" flag to equal TRUE
 - Powers on a simulated science instrument
- Notes
 - OSK was originally designed for flight software developers so
 - OSK does not have the latest version of 42
 - The F42 app has changed with each 42 update, but not all F42's functions have been updated
- Please provide feedback!
 - These demos can serve as the start of a conversation for how OSK could better serve students




Demo Reference Slides

- **1.** Open a terminal window (Ctrl-Alt-t)
- 2. Navigate to the base directory where you installed OSK
 - "~/" is used to indicate the OSK base directory so "~/cfs" is equivalent to "/home/user/OpenSatKit/cfs" if OpenSatKit was installed in the home directory for an account named "user"
- **3.** Change directory to cosmos
 - cd ~/cosmos
- 4. Start COSMOS
 - ~/cosmos\$ ruby Launcher



Running OSK (2 of 2)

6. Select "OpenSatKit" icon with a single click

- This launches COSMOS's Command and Telemetry Server, Telemetry Viewer, and displays OSK's main window
- You can minimize the COSMOS tools, but don't close them

- Each tools on the COSMOS "Launcher" runs as a separate Linux process with a Graphical User Interface (GUI)
- Shaded tool titles indicate the COSMOS tools used by OSK
 - You do not have to invoke these tools directly
 - OSK screens launch COSMOS tools as they are needed to perform a task
 - A backup slide shows a COSMOS architectural view with the data flows between tools

OSK Screen Driven System

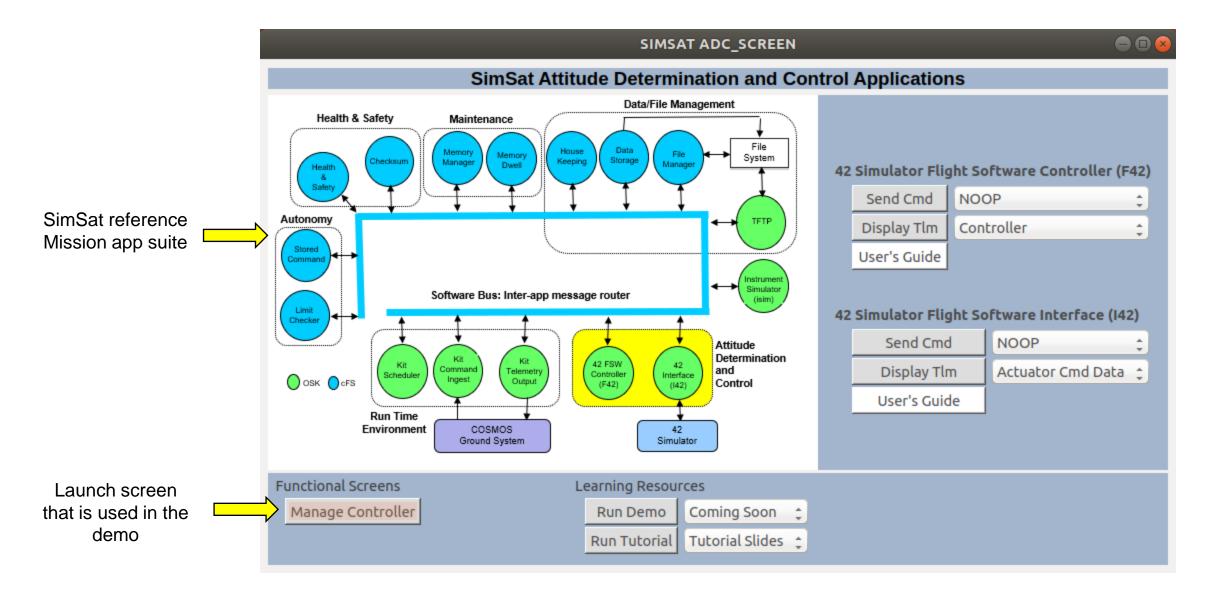
- Four tabs *cFS Education*, Mission FSW, *PiSat*, and *R&D* correspond to four cFS targets/ OSK Use Cases
- Each tab's screen has a similar layout and its own "Getting Started" Guide

`	OpenSatKit						
User Objective Tab	cFS Education Mission FSW Pi-Sat I	R&D					
System/Target Management	System - cfsat Target Start CFS Stop CFS Configure System	OSK Docs & Vide	System Time(secs)				
_	Send Config Cmd About	Copen Reso	ource About 🛟				
Learning Resources ———	cFS Education Docs & Videos <u>Getting Started</u> Op core Flight Executive (cFE)	en Resource About	:				
C	Event Service	Executive Service	Software Bus				
	Table Service	Time Service	cFE Users Guide				
Content specific to User Objective Tab	Create Hello World OS	App Dev Guide < App Tutorial Dev ECI App					

Mission Flight Software Tab

The Mission Flight Software tab manages the end-to-end simulation

FS Education Mission FSW	Pi-Sat		bonie	SatKit		
	rr-Sac	Rab				
System - simsat Target		internet of				
Start cFS Start 42 Sim	Start CFS	WICH 42 SIM				System Time(sec
Stop cFS Stop 42 Sim						1049686
Configure cFS System				OSK Docs & Vide	os	
Send Config Cmd	About			Open Reso	urce	About ‡
Mission FSW Docs & Video	s					
Mission FSW Docs & Video Getting Started	1	n Resource	Ab	out		•
Getting Started	Ope					
Getting Started Application Groups Runtime Environm	Ope	Da	ata/Fil	e Mgmt		Autonomy
Getting Started	Ope	Da	ata/Fil			
Getting Started Application Groups Runtime Environm Attitude Det/Ct	Ope	Da	ata/Fil	e Mgmt		Autonomy
Getting Started Application Groups Runtime Environn Attitude Det/Ct Tune, Verify, and Validate	Ope ent rl	Da	ata/Fil Iealth	e Mgmt		Autonomy Maintenance
Getting Started Application Groups Runtime Environm Attitude Det/Ct	Ope ent rl	Da H	ata/Fil Iealth	e Mgmt _Safety Run Unit Te:	sts	Autonomy
Getting Started Application Groups Runtime Environm Attitude Det/Ct Tune, Verify, and Validate Perf Mon Mgmt	Ope ent rl	Da H erf Mon Demo	ata/Fil Iealth	e Mgmt _Safety	sts	Autonomy Maintenance Run Intgr Test


The attitude determination and control app group provides screens **control** to interact with the I42 and F42 apps

Open

Sat Kit

Attitude Determination and Control Applications

42 Flight Software App Telemetry

		•••					
	42 Simulation						
Ctart carint based	Start 42 Sim	op 42 Sim 👘 R	econnect 42	Set 42 Exec Rate			
Start script-based	Run Ops Demo Set	Ctrl Mode Set 0	Contoller Gains	Configure SunValid			
Demo using COSMOS	I42 - 42 Interface Ap		42 - 42 Standalon	_			
Script Runner	Cmd Valid	1	Cmd Valid	0			
	Cmd Error	0	Cmd Error	0			
	42 Connected	TRUE	Control Exec Cnt	9482			
	42 Cycles	9482	Sun Valid	TRUE			
	Sensor Pkts	9482	OVR Sun Valid	USE_42_SIM			
	Actuator Pkts	9482	Take Science	TRUE			
	Attitude Control						
	Attitude Control Att Err X	Att Err Y	Att Err Z				
	0.000016	0.000047	-0.000012	Plot			
	Rate Err X	Rate Err Y	Rate Err Z				
	-0.000001	0.000005	0.00000	Plot			
	Torq Cmd X	Torq Cmd Y	Torq Cmd Z				
	-0.000066	-0.002566	0.000462	Plot			
	Momentum Control						
	HvB X	HvB Y	HvB Z				
	0.237216	-0.454528	0.938621	Plot			
	Mom Cmd X	Mom Cmd Y	Mom Cmd Z				
	18.922585	12.233530	1.141822	Plot			
	SA Gimbal Command	s					
	SA Gimbal						
	2.084035	Plot					
	Flight Event Messages						
	Closed science file /cf/s	imsat/rec/isim_03	30.txt				

CFS

Ops Script Demo

Script Runner : /mnt/hgfs/OpenSatKit/cosmos/config/targets/SIMSAT/procedures/demo_ctrl_take_sci.rb 🛛 🖨 🖨 🌘	3
<u>F</u> ile <u>E</u> dit <u>S</u> earch Script <u>H</u> elp	
demo_ctrl_take_sci.rb	
Stopped Start Pause Stop]
1#####################################	
<pre>5# 1. This demo intentionally has a limited scope in order to minimize 6# complexity and to make it suitable for presentations 7#</pre>	
8# License: 9# Written by David McComas, licensed under the copyleft GNU General Public 10# License (GPL). 11#	
	5
Script Output:	

/mnt/hgfs/OpenSatKit/cosmos/config/targets/SIMSAT/procedures/demo_ctrl_take_sci.rb saved

3

OSK Document Roadmap

OpenSatKit/docs

- OSK Quick Start: Top-level introduction to OSK and a roadmap for more in-depth engagement
- OSK COSMOS Guide: Describes how COSMOS has been configured and extended for OSK
- OSK App Developer's Guide: Describes how to develop apps using the OSK application framework

OpenSatKit/cosmos/config/targets/CFSAT/docs (cFS educational platform)

- *cFS Education Quick Start Guide*: Introduction to OSK's cFS educational target and associated resources
- core Flight System (cFS) Overview: Introduction to flight software (FSW) and NASA's cFS
- core Flight Executive (cFE) Overview: Overview of the cFE framework and its application services

OpenSatKit/cosmos/config/targets/CFE_[service] /docs

- Each cFE service contains its own tutorial document

OpenSatKit/cosmos/config/targets/SIMSAT/docs (cFS-based mission)

- Mission FSW Quick Start Guide: Introduction to OSK's cFS-based mission target and associated resources
- Simple Sat Overview: Describes the SimpleSat reference mission
- Application Group Guides: Multiple documents that describe how groups of cFS community apps work together

OpenSatKit/cosmos/config/targets/PISAT/docs (Raspberry Pi distro for STEM education)

- Pi-Sat Quick Start Guide: Introduction to OSK's Raspberry Pi target and associated resources

OpenSatKit/cosmos/config/targets/SANDBOX/docs (cFS application playground)

- Research & Development Quick Start Guide: Introduction to OSK's R&D target and associated resources

Recommended reading order if you're new to the cFS. The next steps depends on your goals.

OpenSatKit 42 Notes

CFS

• 42 configuration

Sat Kit

- The OpenSatKit/42/OSK directory contains the 42 configuration files used in the simulation
- Flight software and 42 time is not synchronized
- Simple/Simulated Satellite (SimSat) is a fictitious reference mission
 - The SimSat Quick Start Guide is incomplete
- The demo ops script is located at
 - OpenSatKit/cosmos/config/targets/SIMSAT/procedures/demo_ctrl_take_sci.rb
- I42 and F42 command and telemetry definitions serve as the current documentation
 - OpenSatKit/cosmos/config/targets/F42/cmd_tlm
 - OpenSatKit/cosmos/config/targets/I42/cmd_tlm
- The process to develop and port new algorithms from 42 to a flight software app is complicated and undocumented

Creating a "Hello World" Flight Software Application

Open

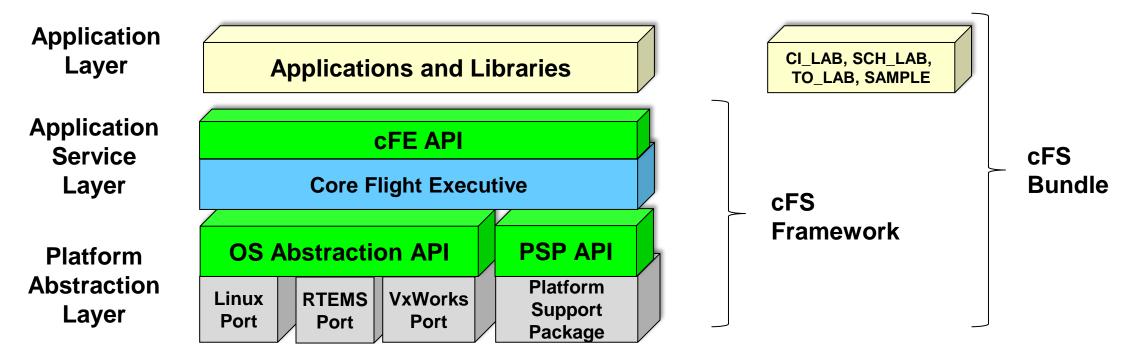
Sat Kit

 Guide participants through the process of creating and running a core Flight System (cFS) application

- Introduce technical concepts including
 - cFS framework and applications
 - CCSDS Electronic Data Sheets (EDS)
 - OpenSatKit application framework

- The short introduction will be a normal slide presentation
- After cFSAT is installed, we will run the python ground system and use it to launch tutorials that will step us through exercises
- We will perform each exercise together and I will pause for any questions
- Significant effort was made to minimize prerequisites
 - Multiple concepts, systems, tools, and workflows are applied, but a detailed knowledge of these is <u>not</u> required
- Versioning notes
 - cFS is a prerelease of Caelum
 - cFSAT is a beta release
 - The OSK framework library (osk_c_fw) and demo app (osk_c_demo) originated from OSK 3.2 (cFS Aquila)
 - They have been updated to cFS Caelum
 - Transferred to their own repos in the OpenSatKit-Apps project

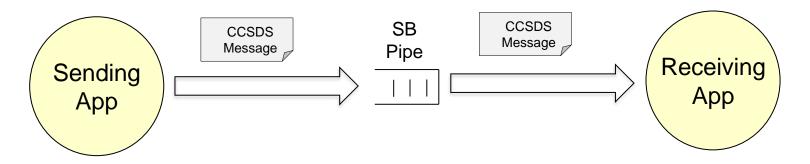
Agenda


FS

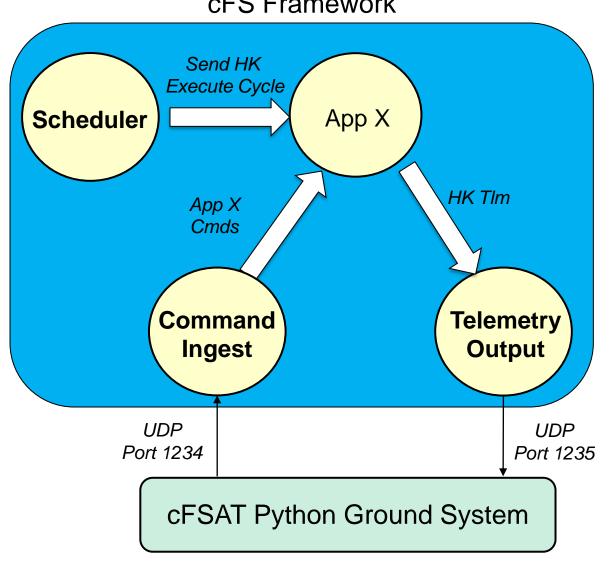
- 1. cFS and cFSAT Introduction
- 2. cFSAT Installation**
- 3. Hands on Exercises
 - A. Build and Run the cFS
 - B. Create Hello World App
 - C. Modify Hello World App

** https://github.com/OpenSatKit/cfsat

- cFS uses a three-tiered software architecture that provides a <u>portable</u> flight software framework with a <u>product line deployment model</u>
 - Platform Abstraction Layer ports to different operating systems (OS) / processor combinations
 - Compile-time configuration parameters and run-time command/table parameters provide adaptability and scalability
- cFE Framework provides <u>portable</u> application runtime environment
 - Mission functionality implemented by a combination of reusable and mission-specific apps



See backup slide for GitHub repos



- The cFE, Operating System Abstraction Layer (OSAL), and Platform Support Package (PSP) provide services and access to system resources for applications
- The Software Bus (SB) is the predominant service that needs to be understood for this tutorial
 - OSK's cfsat target documentation provides cFS educational material <u>https://github.com/OpenSatKit/OpenSatKit/tree/master/cosmos/config/targets/CFSAT/docs</u>
- SB provides a publish/subscribe message bus
 - Apps publish messages on the bus using a broadcast model
 - Apps received messages by creating pipes (FIFO queue) and subscribing to messages on a pipe

cFS Application Runtime Environment

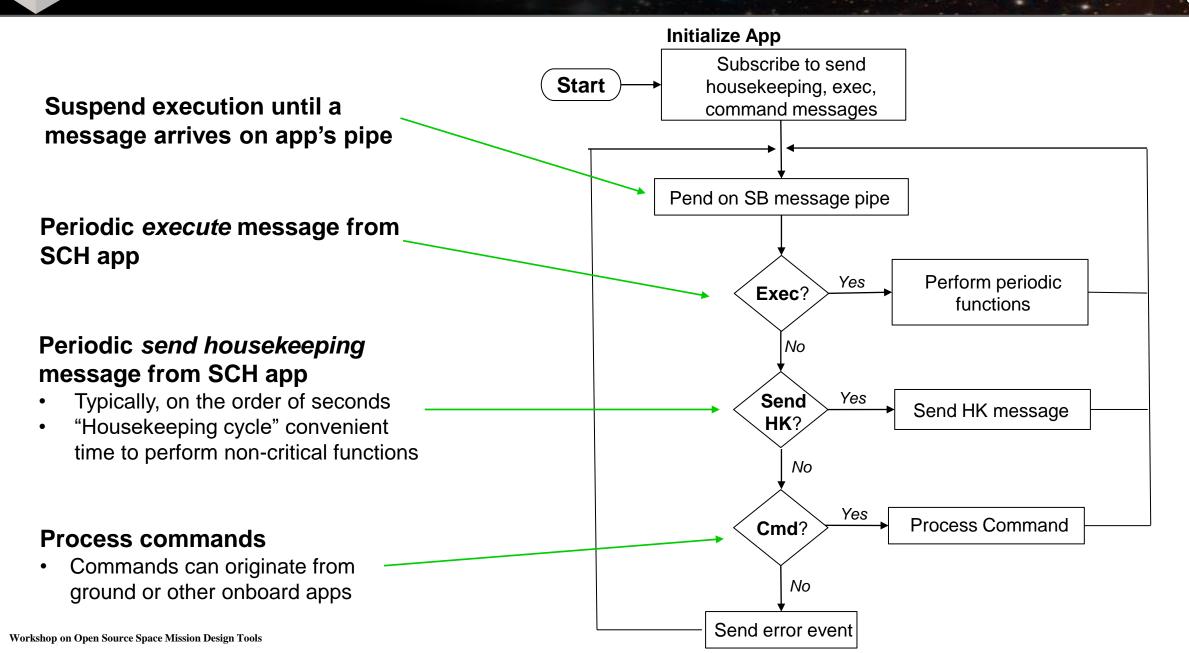
cFS Framework

A core set of apps are required to provide a runtime environment

- Different app implementations can provide customized solutions for different platforms
- File management & transfer not shown

Scheduler (SCH) sends messages at fixed time intervals to signal apps to perform a particular function

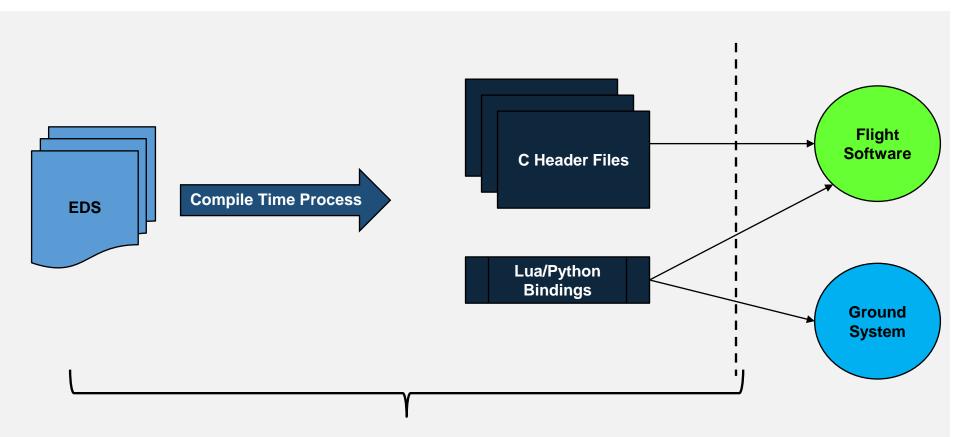
Command Ingest (CI) receives commands from an external source and publishes them on the SB


Telemetry Out (TO) receives messages from the SB and sends them to an external destination

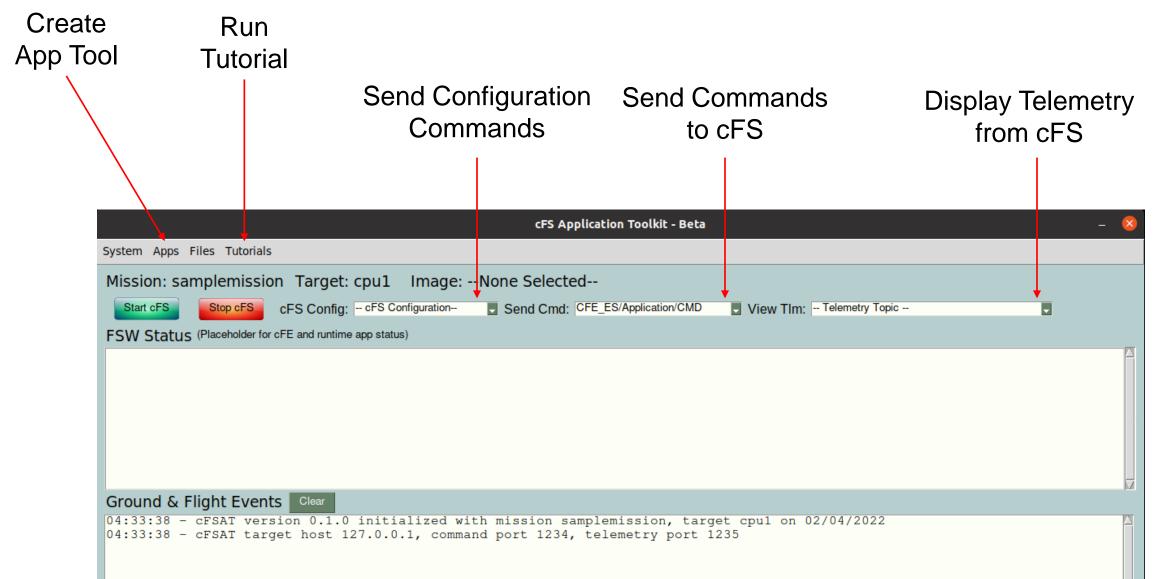
Sat Kit

Application Run Loop Messaging Example

Open


Sat Kit

Electronic Data Sheets


- An Electronic Data Sheet (EDS) is a formal specification of a device, system, or software interface in a machine-readable format
- EDS specifies black box view of interfaces

Single definition of data in EDS propagates to rest of system.

cFSAT Python Ground System

Install cFSAT Prerequisites

Prerequisites

The system can be developed on any GNU/Linux development host. The following commands install the development packages for a Debian/Ubuntu environment. Other Linux distributions should provide a similar set of packages but, the package names and installation tool names may vary.

```
sudo apt-get update -y
sudo apt-get install build-essential
sudo apt-get install cmake
sudo apt-get install libexpat1-dev
sudo apt-get install liblua5.3-dev
sudo apt-get install libjson-c-dev
sudo apt-get install python3-dev
sudo apt-get install python3-pip
sudo apt-get install python3-tk
```


Package Notes:

- sudo apt-get update updates a platform's current package respositories
- build-essential contains a C developer tool suite including gcc, libc-dev, make, etc.*
- cmake must be at least v2.8.12
- liblua5.3-dev must be at least v5.1

The python appplication uses PySimpleGUI which can be installed with the following command:

pip3 install PySimpleGUI

git clone https://github.com/OpenSatKit/cfsat.git

Run Python Ground System Applcation

In a new terminal window, starting in the directory where you issued the git clone, run the Ground System application and establish telemetry flow:

cd cfsat/gnd-sys/app
. ./setvars.sh
python3 cfsat.py

The remainder of this workshop will be performed by launching tutorials from cFSAT's Tutorial menu

			cFS Application Toolkit - Beta		- 🔇
System Apps Files Tuto	prials				
Mission: sample Creat		1 Image:	None Selected		
Start cFS St Build	and Run the cFS	S Configuration	Send Cmd: CFE_ES/Application/CMD	View TIm: Telemetry Topic	
FSW Status (Placehold	er for cFE and runtime app s	status)			

We will be using the following tutorials

- 1. Build and Run the cFS
- 2. Create Hello World App