
1

1

Workshop on Open-Source

Space Missions Design Tools

OpenSatKit

A Tool Suite for Working with

NASA’s Core Flight System

David McComas

dmccomas63@gmail.com

3/1/22Open STEMware Foundation

mailto:dmccomas63@gmail.com

Page 2Workshop on Open Source Space Mission Design Tools

Introduction

• OpenSatKit was originally created to help flight software

developers adopt and work with NASA’s core Flight System (cFS)

• OpenSatKit combines COSMOS, cFS, and 42 into a single platform

– All users must install the complete system regardless of their goals

• OpenSatKit is currently being decomposed into multiple

components that can be combined to better serve user needs

• Agenda

1. Describe the new tool suite

2. Demonstrate end-to-end simulation using the current OpenSatKit

3. Demonstrate cFS app development using cFS Application Toolkit (cFSAT)

• This slide deck contains many details that will not be presented, but

will be valuable as a future reference

on
Ubuntu
Linux

Command & Control

Simulator

OpenSatKit

Page 3Workshop on Open Source Space Mission Design Tools

NASA’s core Flight System

NASA’s core Flight System (cFS) is

an open-source flight software (FSW)

framework providing an application

runtime environment that is portable

across different hardware/operating

system platforms.

The cFS provides a high quality FSW

with decades of flight heritage.

Page 4Workshop on Open Source Space Mission Design Tools

cFS Layered Architecture

Platform Abstraction: Provides portability across different operating systems including Linux, FreeRTOS, and RTEMS

Application Services: Creates an application runtime environment that allows apps to be reused across projects

Libraries and Apps: Provide project functionality

Platform Abstraction

Application Services

Libraries and Applications

NASA

cFS Framework

See backup slide for GitHub repos

NASA

cFS Bundle

Bundle Applications

& Libraries

Page 5Workshop on Open Source Space Mission Design Tools

OpenSatKit Overview

• OpenSatKit (OSK) is suite of open-source products built upon NASA’s core Flight

System (cFS)

• It provides:

1. A cFS educational platform

2. A design & development environment for mission flight software applications

3. Platforms for STEM** education and hobbyists

4. Platforms for technology development

OSK Runtime Bundle

• Built on NASA’s cFS Electronic Data Sheet (EDS) Framework

– EDS supports standards-based interface specifications

• The app suite provides essential flight software functionality

– Command & Telemetry ground interfaces

– Onboard file management and ground-flight file transfers

• Assured framework-app compatibility

**Science Technology Engineering and Mathematics

Page 6Workshop on Open Source Space Mission Design Tools

OpenSatKit Product Suite

OpenSatKit Bundle

- Runtime App Suite

- cFS-EDS Framework

Pi-SAT Bundle Adds:

- Raspberry Pi Apps

- PySimpleGUI for

Command, Telemetry,

& Control

cFSAT Bundle Adds:

- Educational Apps

- PySimpleGUI for

Command, Telemetry,

& Control

Simulation Bundle Adds:

- Mission Apps

- 42 Simulator

- COSMOS for

Command, Telemetry,

& Control

Simulator

Page 7Workshop on Open Source Space Mission Design Tools

cFSAT

• Lightweight platform that serves as a cFS

– Educational platform

– Application development environment

• Suitable for software STEM educational projects including

– FSW application development and test

– Ground software data processing

• Uses the cFS with Electronic Data Sheets (EDS) Framework

– Includes an EDS toolchain that creates ground and flight software artifacts from cFS apps

packaged with an EDS interface specification

– Uses latest cFS v7 Caelum release

• Educational apps for training and self-guided tutorials

• Minimalistic Command, Telemetry and Control ground system

– Written in a lightweight portable python GUI framework called PySimpleGUI

• OpenSatKit-Apps is a github repository of cFS Apps with EDS specifications

cFS Community

“EDS Apps”

https://github.com/jphickey/cfe-eds-framework
https://pysimplegui.readthedocs.io/en/latest/
https://github.com/OpenSatKit-Apps

Page 8Workshop on Open Source Space Mission Design Tools

Pi-SAT

• Adds Raspberry Pi libraries and apps

– Use low-cost Raspberry Pi boards to learn and use the cFS Framework

• Low-cost hardware platform ideal for learning how to write cFS “interface

apps”

– Provides command and telemetry interface to a hardware device

– Use Python to talk with your system

• Base platform can be customized for STEM educational projects

Page 9Workshop on Open Source Space Mission Design Tools

cFSIM

• Complete ground, flight, and dynamic simulation system including

– Ball Aerospace’s COSMOS command and control platform for embedded systems

– NASA Goddard’s 42 dynamic simulator

• Suitable for

– Flight software application development and test

– End-to-end software simulation

– Ground software data processing

Simulator

Page 10Workshop on Open Source Space Mission Design Tools

2022 OSK Product Roadmap

SimSat** on
Ubuntu Linux

Command, Telemetry
& Control

Simulator

Current OpenSatKit
https://github.com/OpenSatKit/OpenSatKit/wiki

OpenSatKit

“EDS Apps”

Refactor

&

Distribute

cFSAT

**SimSat = Reference mission flight software app suite

cFSIM

Beta Release
https://github.com/OpenSatKit/cfsat

https://github.com/OpenSatKit/OpenSatKit/wiki
https://github.com/OpenSatKit/cfsat

11

11

OpenSatKit
End-to-End Simulation

Page 12Workshop on Open Source Space Mission Design Tools

42 Standalone

Ephemeris,
Environment,
& Dynamic

Models

Device
Models

FSW
Algorithms

42 Simulator

Console

Telemetry

Commands

User interact with the

simulation via the console

and graphics

Forces &
Torques

Measured
State

Page 13Workshop on Open Source Space Mission Design Tools

OpenSatKit 42 Simulation

Ephemeris,
Environment,
& Dynamic

Models

Device
Models

42 Simulator

Console

I42 F42

Socket
Interface

Command
Telemetry

Command
Ingest

COSMOS

Flight Software

Telemetry
Output

Telemetry

Commands

Screens

Scripts

Osk_42_lib

Flight Software
algorithms Manually

ported to an app

Command
Telemetry

Publish/Subscribe Message Bus

Page 14Workshop on Open Source Space Mission Design Tools

42 Flight Software App Telemetry

Flight software attitude control app defines

a “Take Science” flag

• Used by “operations” to determine when to

enable science data collection

• Set to TRUE when attitude errors on all three

axes are below a threshold

• Default threshold is .0005 radians

Page 15Workshop on Open Source Space Mission Design Tools

Demo Introduction

• Demo 1

– Use OpenSatKit screens to run and interact with a simulation

– Observe the behavior of the “take science” flag

• Demo 2

– Run a script that manages an ops scenario

• Waits for the “Take Science” flag to equal TRUE

• Powers on a simulated science instrument

• Notes

– OSK was originally designed for flight software developers so

– OSK does not have the latest version of 42

– The F42 app has changed with each 42 update, but not all F42’s functions have been updated

• Please provide feedback!

– These demos can serve as the start of a conversation for how OSK could better serve students

Page 16Workshop on Open Source Space Mission Design Tools

Demo Reference Slides

Page 17Workshop on Open Source Space Mission Design Tools

Running OSK (1 of 2)

1. Open a terminal window (Ctrl-Alt-t)

2. Navigate to the base directory where you installed OSK
– “~/” is used to indicate the OSK base directory so “~/cfs” is equivalent to

“/home/user/OpenSatKit/cfs” if OpenSatKit was installed in the home directory for an account
named “user”

3. Change directory to cosmos

– cd ~/cosmos

4. Start COSMOS

– ~/cosmos$ ruby Launcher

5. Select <OK> to create the “Launcher” screen
shown on the next slide

Page 18Workshop on Open Source Space Mission Design Tools

Running OSK (2 of 2)

• Each tools on the COSMOS “Launcher” runs as a separate Linux
process with a Graphical User Interface (GUI)

• Shaded tool titles indicate the COSMOS tools used by OSK

– You do not have to invoke these tools directly

– OSK screens launch COSMOS tools as they are needed to perform a task

– A backup slide shows a COSMOS architectural view with the data flows
between tools

6. Select “OpenSatKit” icon with a single click

– This launches COSMOS’s Command and Telemetry Server,
Telemetry Viewer, and displays OSK’s main window

– You can minimize the COSMOS tools, but don’t close them

Page 19Workshop on Open Source Space Mission Design Tools

OSK Screen Driven System

• Four tabs cFS Education, Mission FSW, PiSat, and R&D correspond to four cFS targets/ OSK Use Cases

• Each tab’s screen has a similar layout and its own “Getting Started” Guide

User Objective Tab

Content specific to

User Objective Tab

Learning Resources

System/Target

Management

Page 20Workshop on Open Source Space Mission Design Tools

Mission Flight Software Tab

The Mission Flight Software tab manages the end-to-end simulation

The attitude determination and

control app group provides screens

to interact with the I42 and F42 apps

Page 21Workshop on Open Source Space Mission Design Tools

Attitude Determination and Control Applications

Launch screen

that is used in the

demo

SimSat reference

Mission app suite

Page 22Workshop on Open Source Space Mission Design Tools

42 Flight Software App Telemetry

Start script-based

Demo using COSMOS

Script Runner

Page 23Workshop on Open Source Space Mission Design Tools

Ops Script Demo

Page 24Workshop on Open Source Space Mission Design Tools

OSK Document Roadmap

OpenSatKit/docs

– OSK Quick Start: Top-level introduction to OSK and a roadmap for more in-depth engagement

– OSK COSMOS Guide: Describes how COSMOS has been configured and extended for OSK

– OSK App Developer’s Guide: Describes how to develop apps using the OSK application framework

OpenSatKit/cosmos/config/targets/CFSAT/docs (cFS educational platform)

– cFS Education Quick Start Guide: Introduction to OSK’s cFS educational target and associated resources

– core Flight System (cFS) Overview: Introduction to flight software (FSW) and NASA’s cFS

– core Flight Executive (cFE) Overview: Overview of the cFE framework and its application services

OpenSatKit/cosmos/config/targets/CFE_[service] /docs

– Each cFE service contains its own tutorial document

OpenSatKit/cosmos/config/targets/SIMSAT/docs (cFS-based mission)

– Mission FSW Quick Start Guide: Introduction to OSK’s cFS-based mission target and associated resources

– Simple Sat Overview: Describes the SimpleSat reference mission

– Application Group Guides: Multiple documents that describe how groups of cFS community apps work together

OpenSatKit/cosmos/config/targets/PISAT/docs (Raspberry Pi distro for STEM education)

– Pi-Sat Quick Start Guide: Introduction to OSK’s Raspberry Pi target and associated resources

OpenSatKit/cosmos/config/targets/SANDBOX/docs (cFS application playground)

– Research & Development Quick Start Guide: Introduction to OSK’s R&D target and associated resources

1

2

3

Recommended reading order if you’re new to the cFS. The next steps depends on your goals.

Page 25Workshop on Open Source Space Mission Design Tools

OpenSatKit 42 Notes

• 42 configuration

– The OpenSatKit/42/OSK directory contains the 42 configuration files used in the simulation

– Flight software and 42 time is not synchronized

• Simple/Simulated Satellite (SimSat) is a fictitious reference mission

– The SimSat Quick Start Guide is incomplete

• The demo ops script is located at

– OpenSatKit/cosmos/config/targets/SIMSAT/procedures/demo_ctrl_take_sci.rb

• I42 and F42 command and telemetry definitions serve as the current documentation

– OpenSatKit/cosmos/config/targets/F42/cmd_tlm

– OpenSatKit/cosmos/config/targets/I42/cmd_tlm

• The process to develop and port new algorithms from 42 to a flight software app is

complicated and undocumented

26

26

Creating a “Hello World”
Flight Software Application

Page 27Workshop on Open Source Space Mission Design Tools

Objectives

• Guide participants through the process of creating and running

a core Flight System (cFS) application

• Introduce technical concepts including

– cFS framework and applications

– CCSDS Electronic Data Sheets (EDS)

– OpenSatKit application framework

Page 28Workshop on Open Source Space Mission Design Tools

Approach

• The short introduction will be a normal slide presentation

• After cFSAT is installed, we will run the python ground system and use it to

launch tutorials that will step us through exercises

• We will perform each exercise together and I will pause for any questions

• Significant effort was made to minimize prerequisites

– Multiple concepts, systems, tools, and workflows are applied, but a detailed knowledge of these is not required

• Versioning notes

– cFS is a prerelease of Caelum

– cFSAT is a beta release

– The OSK framework library (osk_c_fw) and demo app (osk_c_demo) originated from OSK

3.2 (cFS Aquila)

• They have been updated to cFS Caelum

• Transferred to their own repos in the OpenSatKit-Apps project

Page 29Workshop on Open Source Space Mission Design Tools

Agenda

1. cFS and cFSAT Introduction

2. cFSAT Installation**

3. Hands on Exercises

A. Build and Run the cFS

B. Create Hello World App

C. Modify Hello World App

** https://github.com/OpenSatKit/cfsat

https://github.com/OpenSatKit/cfsat

Page 30Workshop on Open Source Space Mission Design Tools

cFS Architectural Overview

• cFS uses a three-tiered software architecture that provides a portable flight software
framework with a product line deployment model

• Platform Abstraction Layer ports to different operating systems (OS) / processor combinations

• Compile-time configuration parameters and run-time command/table parameters provide
adaptability and scalability

• cFE Framework provides portable application runtime environment

• Mission functionality implemented by a combination of reusable and mission-specific apps

Linux

Port
RTEMS

Port

VxWorks

Port

Platform

Support

Package

OS Abstraction API PSP API

Core Flight Executive

cFE API

Applications and Libraries

cFS

Framework
Platform

Abstraction

Layer

Application

Service

Layer

Application

Layer

cFS

Bundle

CI_LAB, SCH_LAB,

TO_LAB, SAMPLE

See backup slide for GitHub repos

Page 31Workshop on Open Source Space Mission Design Tools

cFS Application Architectural Context

• The cFE, Operating System Abstraction Layer (OSAL), and Platform Support Package

(PSP) provide services and access to system resources for applications

• The Software Bus (SB) is the predominant service that needs to be understood for this

tutorial

– OSK’s cfsat target documentation provides cFS educational material
https://github.com/OpenSatKit/OpenSatKit/tree/master/cosmos/config/targets/CFSAT/docs

• SB provides a publish/subscribe message bus

– Apps publish messages on the bus using a broadcast model

– Apps received messages by creating pipes (FIFO queue) and subscribing to messages on

a pipe

Sending

App

SB

Pipe
Receiving

App

CCSDS

Message

CCSDS

Message

https://github.com/OpenSatKit/OpenSatKit/tree/master/cosmos/config/targets/CFSAT/docs

Page 32Workshop on Open Source Space Mission Design Tools

cFS Application Runtime Environment

A core set of apps are required to provide a

runtime environment

– Different app implementations can provide

customized solutions for different platforms

– File management & transfer not shown

Scheduler (SCH) sends messages at fixed time

intervals to signal apps to perform a particular

function

Command Ingest (CI) receives commands from an

external source and publishes them on the SB

Telemetry Out (TO) receives messages from the SB

and sends them to an external destination

cFSAT Python Ground System

Telemetry

Output

Scheduler

Send HK

Execute Cycle

App X

Cmds

HK Tlm

App X

Command

Ingest

UDP

Port 1234
UDP

Port 1235

cFS Framework

Page 33Workshop on Open Source Space Mission Design Tools

Application Run Loop Messaging Example

No

Yes

Pend on SB message pipe

Start

Initialize App

Subscribe to send

housekeeping, exec,

command messages

Exec?

Send

HK?

Send error event

Perform periodic

functions

Process Command

Send HK message

No

No

Yes

Yes

Suspend execution until a

message arrives on app’s pipe

Cmd?

Periodic execute message from

SCH app

Periodic send housekeeping

message from SCH app
• Typically, on the order of seconds

• “Housekeeping cycle” convenient

time to perform non-critical functions

Process commands
• Commands can originate from

ground or other onboard apps

Page 34Workshop on Open Source Space Mission Design Tools

Electronic Data Sheets

EDS
Compile Time Process

Lua/Python

Bindings

C Header Files Flight

Software

Ground

System

C Header Files
C Header Files

Single definition of data in EDS propagates to rest of system.

• An Electronic Data Sheet (EDS) is a formal specification of a device, system, or

software interface in a machine-readable format

• EDS specifies black box view of interfaces

Page 35Workshop on Open Source Space Mission Design Tools

cFSAT Python Ground System

Send Commands

to cFS
Display Telemetry

from cFS

Send Configuration

Commands

Create

App Tool
Run

Tutorial

Page 36Workshop on Open Source Space Mission Design Tools

Install cFSAT Prerequisites

Page 37Workshop on Open Source Space Mission Design Tools

Clone cFSAT Repo and Run Python Ground System

Page 38Workshop on Open Source Space Mission Design Tools

Hand on Exercises

The remainder of this workshop will be performed by launching tutorials from cFSAT’s

Tutorial menu

We will be using the following tutorials

1. Build and Run the cFS

2. Create Hello World App

